Derivative of a matrix inverse
Derivative of a matrix inverse The derivative of a matrix inverse $\boldsymbol{A}^{-1}$ with respect to $\boldsymbol{A}$ is a 4th order tensor. Since $\dfrac{\partial}{\partial \boldsymbol{A}} \left( \boldsymbol{A}^{-1} \boldsymbol{A} \right) = 0$, $\dfrac{\partial \boldsymbol{A}^{-1}}{\partial \boldsymbol{A}} = - \boldsymbol{A}^{-2}$, but deriving its counterpart based on Einstein notation is not so obvious. Owing to, $$ 0 = \frac{\partial \delta_{km}}{\partial A_{ij}} = \frac{\partial A_{kl}^{-1}}{\partial A_{ij}} A_{lm}+A_{kl}^{-1} \frac{\partial A_{lm}}{\partial A_{ij}} $$and $$ \frac{\partial A_{kn}^{-1}}{\partial A_{ij}} = \frac{\partial A_{kl}^{-1}}{\partial A_{ij}} A_{lm} A_{mn}^{-1} = - A_{kl}^{-1} \frac{\partial A_{lm}}{\partial A_{ij}} A_{mn}^{-1}, $$where ...